Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 620
Filtrar
1.
Sci Rep ; 14(1): 7813, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565862

RESUMO

Steatotic liver disease (SLD) is a burgeoning health problem predominantly associated with excessive alcohol consumption, which causes alcohol-related liver disease (ALD), and high caloric intake, which results in metabolic dysfunction-associated SLD (MASLD). The pathogenesis of ALD and MASLD, which can progress from steatohepatitis to more severe conditions such as liver fibrosis, cirrhosis, and hepatocellular carcinoma, is complicated by several factors. Recently, extracellular ATP and adenosine (Ado), as damage-associated molecular patterns, were reported to promote inflammation and liver fibrosis, contributing to SLD pathogenesis. Here, we explored the in vivo dynamics of hepatic extracellular ATP and Ado during the progression of steatohepatitis using a genetically encoded GPCR-activation-based sensor (GRAB) in zebrafish models. We established hepatocyte-specific GRABATP and GRABAdo in zebrafish and investigated the changes in in vivo hepatic extracellular ATP and Ado levels under ALD or MASLD conditions. Disease-specific changes in hepatocyte extracellular ATP and Ado levels were observed, clearly indicating a correlation between hepatocyte extracellular ATP/Ado dynamics and disease progression. Furthermore, clodronate, a vesicular nucleotide transporter inhibitor, alleviated the MASLD phenotype by reducing the hepatic extracellular ATP and Ado content. These findings provide deep insights into extracellular ATP/Ado dynamics in disease progression, suggesting therapeutic potential for ALD and MASLD.


Assuntos
Fígado Gorduroso , Neoplasias Hepáticas , Doenças Metabólicas , Perciformes , Animais , Peixe-Zebra , Adenosina , Cirrose Hepática , Progressão da Doença , Trifosfato de Adenosina
2.
Eur J Med Chem ; 270: 116387, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593589

RESUMO

Activating apoptosis has long been viewed as an anti-cancer process, but recently increasing evidence has accumulated that induction of ferroptosis has emerged as a promising strategy for cancer therapeutics. Glutathione peroxidase 4 (GPX4) is one of the pivotal factors regulating ferroptosis that targeted inhibition or degradation of GPX4 could effectively trigger ferroptosis. In this study, a series of ML162-quinone conjugates were constructed by using pharmacophore hybridization and bioisosterism strategies, with the aim of obtaining more active anticancer agents via the ferroptosis and apoptosis dual cell death processes. Of these compounds, GIC-20 was identified as the most active one that exhibited promising anticancer activity both in vitro and in vivo via ferroptosis and apoptosis dual-targeting processes, without obvious toxicity compared with ML162. On one hand, GIC-20 could trigger ferroptosis in cells by inducing intracellular lipid peroxide and ROS accumulation, and destroying mitochondrial structure. In addition to GPX4 inhibition, GIC-20 can also trigger ferroptosis via proteasomal-mediated degradation of GPX4, suggesting GIC-20 may function as a molecule glue degrader. On the other hand, GIC-20 can also induce apoptosis via upregulating the level of apoptotic protein Bax and downregulating the level of anti-apoptotic protein Bcl-2 in HT1080 cells. Furthermore, GIC-20 also enhanced the sensitivity of resistant MIA-PaCa-2-AMG510R cells to AMG510, suggesting the great potential of GIC-20 in overcoming the acquired resistance of KRASG12C inhibitors. Overall, GIC-20 represents a novel dual ferroptosis/apoptosis inducer warranting further development for cancer therapeutics and overcoming drug resistance.


Assuntos
Compostos de Anilina , Ferroptose , Naftoquinonas , Neoplasias , Tiofenos , Humanos , Naftoquinonas/farmacologia , Apoptose
3.
Neuron ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38614103

RESUMO

Microglial calcium signaling is rare in a baseline state but strongly engaged during early epilepsy development. The mechanism(s) governing microglial calcium signaling are not known. By developing an in vivo uridine diphosphate (UDP) fluorescent sensor, GRABUDP1.0, we discovered that UDP release is a conserved response to seizures and excitotoxicity across brain regions. UDP can signal through the microglial-enriched P2Y6 receptor to increase calcium activity during epileptogenesis. P2Y6 calcium activity is associated with lysosome biogenesis and enhanced production of NF-κB-related cytokines. In the hippocampus, knockout of the P2Y6 receptor prevents microglia from fully engulfing neurons. Attenuating microglial calcium signaling through calcium extruder ("CalEx") expression recapitulates multiple features of P2Y6 knockout, including reduced lysosome biogenesis and phagocytic interactions. Ultimately, P2Y6 knockout mice retain more CA3 neurons and better cognitive task performance during epileptogenesis. Our results demonstrate that P2Y6 signaling impacts multiple aspects of myeloid cell immune function during epileptogenesis.

4.
Sci Adv ; 10(14): eadn1272, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578992

RESUMO

Direct conversion of hydrocarbons into amines represents an important and atom-economic goal in chemistry for decades. However, intermolecular cross-coupling of terminal alkenes with amines to form branched amines remains extremely challenging. Here, a visible-light and Co-dual catalyzed direct allylic C─H amination of alkenes with free amines to afford branched amines has been developed. Notably, challenging aliphatic amines with strong coordinating effect can be directly used as C─N coupling partner to couple with allylic C─H bond to form advanced amines with molecular complexity. Moreover, the reaction proceeds with exclusive regio- and chemoselectivity at more steric hinder position to deliver primary, secondary, and tertiary aliphatic amines with diverse substitution patterns that are difficult to access otherwise.

5.
Br J Pharmacol ; 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581262

RESUMO

BACKGROUND AND PURPOSE: Neurotransmission and neuroinflammation are controlled by local increases in both extracellular ATP and the endocannabinoid 2-arachidonoyl glycerol (2-AG). While it is known that extracellular ATP stimulates 2-AG production in cells in culture, the dynamics and molecular mechanisms that underlie this response remain poorly understood. Detection of real-time changes in eCB levels with the genetically encoded sensor, GRABeCB2.0, can address this shortfall. EXPERIMENTAL APPROACH: 2-AG and arachidonoylethanolamide (AEA) levels in Neuro2a (N2a) cells were measured by LC-MS, and GRABeCB2.0 fluorescence changes were detected using live-cell confocal microscopy and a 96-well fluorescence plate reader. KEY RESULTS: 2-AG and AEA increased GRABeCB2.0 fluorescence in N2a cells with EC50 values of 81 and 58 nM, respectively; both responses were reduced by the cannabinoid receptor type 1 (CB1R) antagonist SR141617 and absent in cells expressing the mutant-GRABeCB2.0. ATP increased only 2-AG levels in N2a cells, as measured by LC-MS, and induced a transient increase in the GRABeCB2.0 signal within minutes primarily via activation of P2X7 receptors (P2X7R). This response was dependent on diacylglycerol lipase ß activity, partially dependent on extracellular calcium and phospholipase C activity, but not controlled by the 2-AG hydrolysing enzyme, α/ß-hydrolase domain containing 6 (ABHD6). CONCLUSIONS AND IMPLICATIONS: Considering that P2X7R activation increases 2-AG levels within minutes, our results show how these molecular components are mechanistically linked. The specific molecular components in these signalling systems represent potential therapeutic targets for the treatment of neurological diseases, such as chronic pain, that involve dysregulated neurotransmission and neuroinflammation.

6.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559104

RESUMO

Octopamine (OA), analogous to norepinephrine in vertebrates, is an essential monoamine neurotransmitter in invertebrates that plays a significant role in various biological functions, including olfactory associative learning. However, the spatial and temporal dynamics of OA in vivo remain poorly understood due to limitations associated with the currently available methods used to detect it. To overcome these limitations, we developed a genetically encoded GPCR activation-based (GRAB) OA sensor called GRABOA1.0. This sensor is highly selective for OA and exhibits a robust and rapid increase in fluorescence in response to extracellular OA. Using GRABOA1.0, we monitored OA release in the Drosophila mushroom body (MB), the fly's learning center, and found that OA is released in response to both odor and shock stimuli in an aversive learning model. This OA release requires acetylcholine (ACh) released from Kenyon cells, signaling via nicotinic ACh receptors. Finally, we discovered that OA amplifies aversive learning behavior by augmenting dopamine-mediated punishment signals via Octß1R in dopaminergic neurons, leading to alterations in synaptic plasticity within the MB. Thus, our new GRABOA1.0 sensor can be used to monitor OA release in real-time under physiological conditions, providing valuable insights into the cellular and circuit mechanisms that underlie OA signaling.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38639991

RESUMO

The ability to measure dynamic changes in neurochemicals with high spatiotemporal resolution is essential for understanding the diverse range of functions mediated by the brain. We review recent advances in genetically encoded sensors for detecting neurochemicals and discuss their in vivo applications. For example, notable progress has been made with respect to sensors for second messengers such as cyclic adenosine monophosphate, enabling in vivo real-time monitoring of these messengers at single-cell and even subcellular resolution. Moreover, the emergence of highly sensitive sensors for neurotransmitters and neuromodulators has greatly accelerated the study of these signaling molecules in a wide variety of behavioral models using an array of powerful imaging techniques. Finally, we discuss the future direction of neurochemical sensors, including their ability to measure neurochemical concentrations and the potential for multiplex imaging.

8.
J Agric Food Chem ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642053

RESUMO

Nucleoside diphosphate kinases (NDPKs) are nucleotide metabolism enzymes that play different physiological functions in different species. However, the roles of NDPK in phytopathogen and mycotoxin production are not well understood. In this study, we showed that Fusarium graminearum FgNdpk is important for vegetative growth, conidiation, sexual development, and pathogenicity. Furthermore, FgNdpk is required for deoxynivalenol (DON) production; deletion of FgNDPK downregulates the expression of DON biosynthesis genes and disrupts the formation of FgTri4-GFP-labeled toxisomes, while overexpression of FgNDPK significantly increases DON production. Interestingly, FgNdpk colocalizes with the DON biosynthesis proteins FgTri1 and FgTri4 in the toxisome, and coimmunoprecipitation (Co-IP) assays show that FgNdpk associates with FgTri1 and FgTri4 in vivo and regulates their localizations and expressions, respectively. Taken together, these data demonstrate that FgNdpk is important for vegetative growth, conidiation, and pathogenicity and acts as a key protein that regulates toxisome formation and DON biosynthesis in F. graminearum.

9.
Physiol Mol Biol Plants ; 30(3): 453-466, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38633274

RESUMO

In this study, we applied exogenous chlorogenic acid (CGA) to Lonicera japonica (L. japonica) leaves via foliar sprays every Monday, Wednesday, and Friday for a period of 12 months. Our continuous monitoring over this period revealed a consistent increase in flavonoid levels from the second to the tenth month following the commencement of CGA treatment. This was accompanied by a notable upregulation in the expression of four secondary metabolite-related enzyme genes: LjPAL1, LjPAL2, LjPAL3, and LjISY1. Concurrently, there was a significant enhancement in the total activity of the enzyme phenylalanine ammonia-lyase. The total antioxidant capacity of the plants also showed a marked increase from the third to the seventh month post-treatment initiation, subsequently stabilizing. This increase was also reflected in the elevated activities of key antioxidant enzymes: peroxidase, polyphenol oxidase, and superoxide dismutase. Furthermore, the treatment notably enhanced various indicators of nutrient growth, such as total protein content, total sugar content, and leaf area. Notably, the relative expression of LjTF1, a kind of BZIP transcription factor gene known for its extensive regulatory effects, showed a significant and sustained increase after the start of exogenous CGA treatment. Subsequent metabolomic analysis revealed significant changes in L. japonica metabolites. Specifically, 172 differentially expressed metabolites (DEMs) showed a notable increase (Fold > 1), predominantly in pathways related to nutrient metabolism such as carbohydrate, amino acid, and energy metabolism. Notably, some of the highly expressed DEMs (Fold > 4) are key antioxidants and medicinal components in L. japonica. The experimental findings were in alignment with the metabolomics analysis, indicating that exogenous CGA can act as a stimulant for L. japonica. It promotes the significant accumulation of certain secondary metabolites, enhances nutritive growth, and boosts the plant's total antioxidant capacity. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-024-01435-8.

10.
Platelets ; 35(1): 2327835, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38655673

RESUMO

Percutaneous coronary intervention (PCI) patients combined with thrombocytopenia (TP) are usually considered to be at low ischemic risk, receiving less proper antiplatelet therapy. However, recent studies reported a paradoxical phenomenon that PCI patients with TP were prone to experience thrombotic events, while the mechanisms and future treatment remain unclear. We aim to investigate whether inflammation modifies platelet reactivity among these patients. Consecutive 10 724 patients undergoing PCI in Fuwai Hospital were enrolled throughout 2013. High-sensitivity C-reactive protein (hsCRP) ≥2 mg/L was considered inflammatory status. TP was defined as platelet count <150×109/L. High on-treatment platelet reactivity (HTPR) was defined as adenosine diphosphate-induced platelet maximum amplitude of thromboelastogram >47mm. Among 6617 patients finally included, 879 (13.3%) presented with TP. Multivariate logistic regression demonstrated that patients with TP were associated with a lower risk of HTPR (odds ratio [OR] 0.64, 95% confidence interval [CI] 0.53-0.76) than those without TP in the overall cohort. In further analysis, among hsCRP <2 mg/L group, patients with TP exhibited a decreased risk of HTPR (OR 0.53, 95% CI 0.41-0.68); however, in hsCRP ≥2mg/L group, TP patients had a similar risk of HTPR as those without TP (OR 0.83, 95% CI 0.63-1.08). Additionally, these results remain consistent across subgroups, including patients presenting with acute coronary syndrome and chronic coronary syndrome. Inflammation modified the platelet reactivity of PCI patients with TP, providing new insights into the mechanisms of the increased thrombotic risk. Future management for this special population should pay more attention to inflammation status and timely adjustment of antiplatelet therapy in TP patients with inflammation.


What is the context? Recent studies reported a paradoxical phenomenon that percutaneous coronary intervention (PCI) patients with thrombocytopenia (TP) were prone to experience thrombotic events. The potential mechanisms underlying the increased thrombotic risk and how to manage antiplatelet therapy in PCI patients with TP remain unclear.Growing attention has been paid to immunothrombosis. Inflammation is closely associated with high-on treatment platelet reactivity (HTPR) and thrombotic risk.HTPR is an independent risk factor of thrombosis and can provide information for guiding antiplatelet therapy.What is new? This prospective cohort study enrolled 10 724 patients undergoing PCI in Fuwai Hospital (National Center for Cardiovascular Diseases, Beijing, China), with HTPR risk being the study endpoint of interest.We first reported that inflammation significantly modified the platelet reactivity of PCI patients with TP.When hsCRP level <2 mg/L, PCI patients with TP had a decreased risk of HTPR. However, when hsCRP ≥2 mg/L, TP patients had similar HTPR risk as those without TP.HsCRP levels could modify the relationship between TP and HTPR risks both in patients with acute coronary syndrome and chronic coronary syndrome.What is the impact? These results provide insights into potential mechanisms of the increased thrombotic risk in PCI patients with TP. Specifically, inflammation might be involved in the thrombotic risk of PCI patients with TP by modifying the platelet reactivity.As for future management, personalized antiplatelet therapy should be administrated to TP patients with inflammation status.


Assuntos
Plaquetas , Inflamação , Intervenção Coronária Percutânea , Trombocitopenia , Humanos , Intervenção Coronária Percutânea/métodos , Intervenção Coronária Percutânea/efeitos adversos , Masculino , Feminino , Inflamação/sangue , Trombocitopenia/etiologia , Trombocitopenia/sangue , Trombocitopenia/complicações , Plaquetas/metabolismo , Pessoa de Meia-Idade , Idoso , Ativação Plaquetária , Proteína C-Reativa/metabolismo , Contagem de Plaquetas/métodos
11.
Cell ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38657602

RESUMO

Antigen presentation defects in tumors are prevalent mechanisms of adaptive immune evasion and resistance to cancer immunotherapy, whereas how tumors evade innate immunity is less clear. Using CRISPR screens, we discovered that IGSF8 expressed on tumors suppresses NK cell function by interacting with human KIR3DL2 and mouse Klra9 receptors on NK cells. IGSF8 is normally expressed in neuronal tissues and is not required for cell survival in vitro or in vivo. It is overexpressed and associated with low antigen presentation, low immune infiltration, and worse clinical outcomes in many tumors. An antibody that blocks IGSF8-NK receptor interaction enhances NK cell killing of malignant cells in vitro and upregulates antigen presentation, NK cell-mediated cytotoxicity, and T cell signaling in vivo. In syngeneic tumor models, anti-IGSF8 alone, or in combination with anti-PD1, inhibits tumor growth. Our results indicate that IGSF8 is an innate immune checkpoint that could be exploited as a therapeutic target.

12.
bioRxiv ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38659921

RESUMO

Synthetic receptors that mediate antigen-dependent cell responses are transforming therapeutics, drug discovery, and basic research. However, established technologies such as chimeric antigen receptors (CARs) can only detect immobilized antigens, have limited output scope, and lack built-in drug control. Here, we engineer synthetic G protein-coupled receptors (GPCRs) capable of driving a wide range of native or nonnative cellular processes in response to user-defined antigen. We achieve modular antigen gating by engineering and fusing a conditional auto-inhibitory domain onto GPCR scaffolds. Antigen binding to a fused nanobody relieves auto-inhibition and enables receptor activation by drug, thus generating Programmable Antigen-gated G protein-coupled Engineered Receptors (PAGERs). We create PAGERs responsive to more than a dozen biologically and therapeutically important soluble and cell surface antigens, in a single step, from corresponding nanobody binders. Different PAGER scaffolds permit antigen binding to drive transgene expression, real-time fluorescence, or endogenous G protein activation, enabling control of cytosolic Ca 2+ , lipid signaling, cAMP, and neuronal activity. Due to its modular design and generalizability, we expect PAGER to have broad utility in discovery and translational science.

13.
Talanta ; 274: 125999, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38583327

RESUMO

The construction of efficient methods for highly sensitive and rapid detection of disease markers is essential for the early diagnosis of serious diseases. In this paper, taking advantage of the UiO-66-NH2 signal molecule in combination with a waste-free entropy-driven DNA machine, a novel homogeneous electrochemical ratiometric platform is developed to detect MircoRNA (miRNA). Metal-organic framework materials (UiO-66-NH2 MOF) and ferrocene were utilized as electrochemical signal tags and reference probes, respectively. The target-initiated waste-free three-dimensional (3D) entropy-driven DNA nanomachine is activated in the presence of miRNA, resulting in DNA-labeled-UiO-66-NH2 falling off from the electrode, leading to a decrease in the signal of UiO-66-NH2 at 0.83V. Our strategy can mitigate false positive responses induced by the DNA probes immobilized on electrodes in traditional distance-dependent signal adjustment ratiometric strategies. The proposed ratiometric platform demonstrates superior sensitivity (a detection limit of 9.8 fM), simplified operation, high selectivity, and high repeatability. The ratiometric biosensor is also applied to detect miRNA content in spiked serum samples.

14.
SAGE Open Med ; 12: 20503121241228474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516642

RESUMO

Background: Renal cell carcinoma is the most common form of kidney cancer which is a global threat to human health, needing to explore effective therapeutic targets and treatment methods. Aurora kinase B acts as an important carcinogenic role in various kinds of tumors, while its mechanism in renal cell carcinoma is indistinct. Herein we explore the underlying mechanism of Aurora kinase B in renal cell carcinoma. Methods and results: Label-free quantitative proteomics analysis was employed to analyze the differentially expressed proteins in 786-O cells which were treated with si-Aurora kinase B or si-ctrl. In the current study, 169 differentially expressed proteins were identified. The top 10 upregulated proteins were MX2, IFI44L, ISG20, DDX58, F3, IFI44, ECE1, PRIC285, NIT1, and IFIT2. The top 10 downregulated proteins were FKBP9, FSTL1, DDAH1, TGFB2, HMGN3, COIL, FAM65A, PTPN14, ARFGAP2, and EIF2C2. GO enrichment analysis showed that these differentially expressed proteins participated in biological processes, including defense response to virus, response to virus, and type I interferon signaling pathway. These differentially expressed proteins participated in cellular components, including focal adhesion, cell-substrate adherens junction, cell-substrate junction, and endoplasmic reticulum lumen. These differentially expressed proteins participated in molecule functions, including guanyl nucleotide binding, nucleotidase activity, double-stranded RNA binding, 2'-5'-oligoadenylate synthetase activity, and virus receptor activity. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the significantly changed proteins including OAS3, OAS2, JAK1, TAP1, and RAC1 were involved in Epstein-Barr virus infection. Conclusions: Taken together, our results demonstrate the possible mechanisms that Aurora kinase B may participate in renal cell carcinoma. These findings may provide insights into tumorigenesis and a theoretical basis for developing potential therapies of renal cell carcinoma.

15.
Divers Distrib ; 30(3): 1-18, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38515563

RESUMO

Aim: The seagrass Zostera japonica is a dramatically declined endemic species in the Northwestern Pacific from the (sub)tropical to temperate areas, however, it is also an introduced species along the Pacific coast of North America from British Columbia to northern California. Understanding the population's genetic patterns can inform the conservation and management of this species. Location: North Pacific. Methods: We used sequences of the nuclear rDNA internal transcribed spacer (ITS) and chloroplast trnK intron maturase (matK), and 24 microsatellite loci to survey 34 native and nonnative populations (>1000 individuals) of Z. japonica throughout the entire biogeographic range. We analysed the phylogeographic relationship, population genetic structure and genetic diversity of all populations and inferred possible origins and invasion pathways of the nonnative ones. Results: All markers revealed a surprising and significant deep divergence between northern and southern populations of Z. japonica in the native region separated by a well-established biogeographical boundary. A secondary contact zone was found along the coasts of South Korea and Japan. Nonnative populations were found to originate from the central Pacific coast of Japan with multiple introductions from at least two different source populations, and secondary spread was likely aided by waterfowl. Main Conclusions: The divergence of the two distinct clades was likely due to the combined effects of historical isolation, adaptation to distinct environments and a contemporary physical barrier created by the Yangtze River, and the warm northward Kuroshio Current led to secondary contact after glacial separation. Existing exchanges among the nonnative populations indicate the potential for persistence and further expansion. This study not only helps to understand the underlying evolutionary potential of a widespread seagrass species following global climate change but also provides valuable insights for conservation and restoration.

16.
Neuron ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38537642

RESUMO

A postulated role of subcortical neuromodulators is to control brain states. Mechanisms by which different neuromodulators compete or cooperate at various temporal scales remain an open question. We investigated the interaction of acetylcholine (ACh) and oxytocin (OXT) at slow and fast timescales during various brain states. Although these neuromodulators fluctuated in parallel during NREM packets, transitions from NREM to REM were characterized by a surge of ACh but a continued decrease of OXT. OXT signaling lagged behind ACh. High ACh was correlated with population synchrony and gamma oscillations during active waking, whereas minimum ACh predicts sharp-wave ripples (SPW-Rs). Optogenetic control of ACh and OXT neurons confirmed the active role of these neuromodulators in the observed correlations. Synchronous hippocampal activity consistently reduced OXT activity, whereas inactivation of the lateral septum-hypothalamus path attenuated this effect. Our findings demonstrate how cooperative actions of these neuromodulators allow target circuits to perform specific functions.

17.
Anal Chim Acta ; 1299: 342432, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38499419

RESUMO

Efficient detection of cancer-related nucleic acids is pivotal for early cancer diagnosis. This study introduces a target induced three-dimensional DNA biomimetic networks (B-3D Net)-based ratiometric fluorescence platform using manganese dioxide nanosheets (MnO2 NS)/o-phenylenediamine in combination with hybridization chain reaction to detect cancer-related genes (p53 gene). The incorporation of multiple signals within the B-3D networks can significantly enhance catalytic activity and amplify the output signals, enabling a high sensitivity. Compared with traditional ratio fluorescence platforms, there is no demand to synthesize fluorescent nanoprobes due to the in-situ formation of fluorescence species, which is simple and cost-effective. The corresponding assay demonstrated exceptional sensitivity (with a detection limit as low as 2 fM), selectivity, reproducibility, and accuracy, which mitigates disturbances caused by instrument errors, an inaccurate probe count, and the microenvironment. Furthermore, the ease and straightforwardness of discerning changes in fluorescent brightness and colour by the naked eye are evident. Using the relevant software, a linear relationship between fluorescent images using a smartphone and target concentration was obtained. Hence, the novel ratiometric sensing system will demonstrate new opportunities on determination of target DNA samples in complex biological environments.


Assuntos
Neoplasias , Óxidos , Compostos de Manganês , Corantes Fluorescentes , Reprodutibilidade dos Testes , Biomimética , DNA/genética , Limite de Detecção
18.
Opt Lett ; 49(6): 1620-1623, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489466

RESUMO

The resolution of a lensless on-chip microscopy system is constrained by the pixel size of image sensors. This Letter introduces a super-resolution on-chip microscopy system based on a compact array light source illumination and sub-pixel shift search. The system utilizes a closely spaced array light source composed by four RGB LED modules, sequentially illuminating the sample. A sub-pixel shift search algorithm is proposed, which determines the sub-pixel shift by comparing the frequency of captured low-resolution holograms. Leveraging this sub-pixel shift, a super-resolution reconstruction algorithm is introduced, building upon a multi-wavelength phase retrieval method, enabling the rapid super-resolution reconstruction of holograms with the region-of-interest. The system and algorithms presented herein obviate the need for a displacement control platform and calibration of the illumination angles of the light source, facilitating a super-resolution phase reconstruction under partially coherent illumination.

19.
Neuron ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38547869

RESUMO

Norepinephrine (NE) is an essential biogenic monoamine neurotransmitter. The first-generation NE sensor makes in vivo, real-time, cell-type-specific and region-specific NE detection possible, but its low NE sensitivity limits its utility. Here, we developed the second-generation GPCR-activation-based NE sensors (GRABNE2m and GRABNE2h) with a superior response and high sensitivity and selectivity to NE both in vitro and in vivo. Notably, these sensors can detect NE release triggered by either optogenetic or behavioral stimuli in freely moving mice, producing robust signals in the locus coeruleus and hypothalamus. With the development of a novel transgenic mouse line, we recorded both NE release and calcium dynamics with dual-color fiber photometry throughout the sleep-wake cycle; moreover, dual-color mesoscopic imaging revealed cell-type-specific spatiotemporal dynamics of NE and calcium during sensory processing and locomotion. Thus, these new GRABNE sensors are valuable tools for monitoring the precise spatiotemporal release of NE in vivo, providing new insights into the physiological and pathophysiological roles of NE.

20.
Nat Methods ; 21(4): 692-702, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38443508

RESUMO

The serotonergic system plays important roles in both physiological and pathological processes, and is a therapeutic target for many psychiatric disorders. Although several genetically encoded GFP-based serotonin (5-HT) sensors were recently developed, their sensitivities and spectral profiles are relatively limited. To overcome these limitations, we optimized green fluorescent G-protein-coupled receptor (GPCR)-activation-based 5-HT (GRAB5-HT) sensors and developed a red fluorescent GRAB5-HT sensor. These sensors exhibit excellent cell surface trafficking and high specificity, sensitivity and spatiotemporal resolution, making them suitable for monitoring 5-HT dynamics in vivo. Besides recording subcortical 5-HT release in freely moving mice, we observed both uniform and gradient 5-HT release in the mouse dorsal cortex with mesoscopic imaging. Finally, we performed dual-color imaging and observed seizure-induced waves of 5-HT release throughout the cortex following calcium and endocannabinoid waves. In summary, these 5-HT sensors can offer valuable insights regarding the serotonergic system in both health and disease.


Assuntos
Receptores Acoplados a Proteínas G , Serotonina , Humanos , Camundongos , Animais , Serotonina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Córtex Cerebral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...